

Analyzing Long-Run Energy-Efficiency Potential in California

Michael Rufo, Alan North, Mike Ting, Quantum Consulting

Maximilian Auffhammer, Agricultural and Resource Economics & International Area Studies, UC Berkeley

Mitigation Panel 1

2nd Annual Climate Change Research Conference September 14-16, 2005

Project Overview

- Develop long-run estimates of EE potential for CA's residential electric sector
- Establish process that could be replicated for other electric and natural gas buildings and industrial sectors
- Inform BEAR and related analyses
- PIER EA Climate Change, CIEE Administered
- Alan Sanstad, LBNL PM

Why Long-Run EE Forecasts?

- CA Climate Change Initiative
 - Emission reduction targets
 - 2000 levels by 2010
 - 1990 levels by 2020
 - 80% below 1990 levels by 2050
- Achieving targets will require combination of mitigation strategies
- How much contribution can efficiency in buildings and industrial sectors provide?

Emissions and Consumption

- CA's GHG emissions:
 - Transportation (41%) + Ag/Forestry (8%) = \sim 50%
 - − Power, Industrial, and Buildings = ~50%;
 - Electric power ~20%; Industrial ~23%; Residential & Commercial ~7%
 - Most of power sector serves buildings & industrial
- Buildings and industrial emissions a function of electric, gas, and other fuel consumption
- Consumption a function of end use service demand

CA's Historic Efficiency Policies

- Title 24 Building Standards
- Title 20 Appliance Standards
- Utility programs
- Energy crisis programs
- Per capita electric use held constant. efficiency increased

- But total use grew @2%/yr
 - ...Though well below national avg.

Forecasting Consumption & Efficiency

- Policy efforts to improve efficiency levels will continue
 - CPUC and EAP Goals for 2006-2008; CEC next round of standards; AB 549
- Common forecasting methods
 - Econometric models
 - End use forecasting models
 - Bottom up technology adoption models
 - Combined methods

Econometric Approach

Empirical Approach:

- Aggregate Residential Energy Demand
- Inform forecasts using 50 state data
- Estimate response coefficients
- Basis for simulation

Empirical Per Capita Demand Specification:

$$q_{jit} = \alpha_i + \beta_1 q_{jit-1} + \beta_2 y_{it} + \beta_3 y_{jit-1} + \beta_4 p_{jit} + \beta_5 p_{jit-1} + \beta_6 p_{:jit} + \beta_7 HDD_{it} + \beta_7 CDD_{it} + \eta$$

Contributions of Econometric Analysis

- Separate out impact of aggregate programs and standards
- Incorporate Information from similar states
- Methodological Advance specific to State Level Forecasting
- Combine information from bottom up and econometric approach to construct boundaries of predictions

Thumbnail History of Bottom UP EE Studies

- Initial supply curve studies in early 1980s
 - Meier, Rosenfeld, Sant, Lovins, et al.
- Many comprehensive utility studies in late 1980s
 - Dozens of utility-specific/regional
 - Many models developed
- Early 1990s focus on inputs to IRP
 - Process peaked by 1994
- Very few studies post 1996
- Significant work by national labs in late 1990s
 - Occurred within greenhouse gas studies
- Surge in utility studies since 2001

Bottom Up Approaches

- Technology-specific costs, efficiencies, features
- Base forecasts
- Detailed stock data/turnover

 Total potential via technology supply curves

Predicted impacts over time via adoption modeling

Limitations to Methods

Bottom Up

- Need for detailed technology-specific data
- Need for highly disaggregated market data
- Difficulty predicting technology-specific adoption
- Limited focus on non-efficiency consumption drivers

Econometric

- Dependence on past trends
- Limits of time series data on program/policy effects
- Lack of physical characteristics

Approach to Estimating Long-Run Efficiency Potential

- Timeframe: 2020 and 2050
- Use end use framework
- Assess emerging techs and tech frontiers
- Simplify/stylize bottom up tech detail
- Use scenario analysis
- Use econometrics to inform scenarios

Approach to Estimating Long-Run Efficiency Potential (cont.)

- End use consumption function of:
 - Service level, efficiency, saturation, households
- Scenario analysis on all key factors
- Scenarios:
 - Efficiency
 - Costs and levels
 - Interviews, literature, physical constraints
 - Fuel prices
 - Policy effects

- Service levels
 - Size
 - Features
 - Policy effects

Goals

- Increase understanding of:
 - CA residential consumption trends
 - Importance of service level and units
 - Range of policy and price effects
 - Contribution of efficiency to GHG mitigation
- Develop approach to expand to other sectors and fuels
- Inform BEAR and other long-term economic analyses